

Uwaise Ibna Islam

PhD Student in Computer Science (Bioinformatics)

954-666-2083 | uwaiseibna03@gmail.com | Google Scholar | GitHub

RESEARCH SUMMARY

PhD candidate specializing in scalable computational genomics with focus on population-scale haplotype analysis and algorithm development. Proven track record developing high-performance bioinformatics tools (PBWT indexing achieving 305% speedup), publishing in top-tier venues, and building production-ready software. Expertise spans sequence alignment algorithms, variant analysis pipelines, machine learning for genomic data, and cloud-based HPC workflows. Seeking bioinformatics internship to apply computational skills to real-world genomic challenges.

EDUCATION

University of Florida | PhD in Computer Science (Bioinformatics), Expected May 2028

- Research focus: Scalable algorithms for population genomics, PBWT-based haplotype matching, variant analysis
- Advisor: Dr. Christina Boucher | GPA: 4.00

Florida Atlantic University | MS in Computer Science, GPA: 3.97, Aug 2022 – May 2024

- Research: Cross-species genotype-phenotype association prediction using deep learning
- Presidential Fellowship recipient; Academic Excellence Award (2023, 2024)

Chittagong University of Engineering & Technology | BS in Computer Science, Feb 2016 – Jun 2021

TECHNICAL SKILLS

- **Genomics & Variant Analysis:** PBWT/PBML algorithms, Haplotype phasing, Variant calling (GATK, BCFtools), Population genetics (PLINK, VCFtools), Sequence alignment (BWA, SAMtools), Phylogenetics, SMEM computation
- **Programming:** C++ (primary), Python, R, Bash/Shell, SQL; Experience with performance optimization, multi-threading, parallel computing
- **Machine Learning:** PyTorch, TensorFlow, Keras, Scikit-learn; Neural networks, CNNs, supervised/unsupervised learning
- **Data Structures & Libraries:** SDS (succinct data structures), HTSlib, run-length encoding, LCP/LCS arrays, sparse indexing
- **Infrastructure & DevOps:** HPC clusters (SLURM), Docker, Git/GitHub, Linux/UNIX, GCP, R/Bioconductor package development
- **Bioinformatics Workflows:** SHAPEIT, BEDtools, Detectron2, DensePose, .bcf/.vcf processing, genomic benchmarking

RESEARCH EXPERIENCE

Graduate Research Assistant | University of Florida, Boucher Lab

Jul 2025 – Present

- Designed and implemented PBML, a novel algorithm for scalable PBWT indexing enabling efficient haplotype matching in population-scale genomic datasets (1000 Genomes, BIG Initiative biobank).
- Integrated Boyer-Moore-Li skipping strategy with forward-backward PBWT traversal to accelerate SMEM (Set Maximal Exact Match) queries with configurable minimum length thresholds ($L = 1,000\text{--}10,000$).
- Engineered bidirectional PBWT implementation supporting LCP/LCS computation, run-based haplotype retrieval, and multi-threaded .bcf query processing using SDS and HTSlib libraries.
- Achieved 38% faster index construction, 62% faster single-threaded queries, and 306% multi-threaded speedup on 1000 Genomes data (2,504 samples, 84.4M variants) compared to existing PBWT tools.
- Optimized long haplotype tract queries ($L \geq 10,000$): reduced runtime by 73% and memory by 20%, reporting 1.15M+ genome-wide matches with 95–99.8% query coverage.
- Validated on real-world biobank data (BIG Initiative): demonstrated 38% query time reduction and up to 93% speedup for long-range haplotype identification, critical for IBD detection and rare variant studies.

Graduate Research Assistant | Florida Atlantic University, Assis Group

Aug 2022 – May 2025

- Developed deep learning framework predicting genotype-phenotype associations from multi-species genomic alignments, achieving 100% cross-validated accuracy across diverse phenotypes (dietary preferences, environmental adaptations).
- Authored R/Bioconductor package implementing scalable genomic analysis pipelines with parallel computing, supporting 59 species and integrating neural network models for evolutionary genomics research.
- Optimized large-scale sequence processing workflows, reducing runtime by 7x through algorithmic improvements and HPC utilization.
- Published methodology in *Briefings in Bioinformatics* (IF: 9.5); package adopted by collaborating research groups.

PROJECTS

High-Performance PBWT Toolkit (C++/SDSL)	C++/SDSL
<ul style="list-style-type: none">Implemented run-length encoded PBWT with support for SMEM thresholds, efficient column construction, and backward/forward navigation.Benchmarked performance against existing PBWT libraries, achieving noticeable speedups in memory-sensitive tasks.	
Multi-Species Genotype-Phenotype Association Models	Python, R, Machine Learning
<ul style="list-style-type: none">Developed models leveraging incomplete multi-species alignments and evolutionary gaps to infer phenotype associations.Designed simulation pipelines to generate synthetic sequence-phenotype datasets for model validation.Achieved 100% cross-validated prediction accuracy on simulated and real datasets, highlighting model robustness.	
Human Body-Weight Estimator PyTorch, Detectron2, CNN, DensePose	June 2024
<ul style="list-style-type: none">Designed a pipeline to estimate weight from 2400 real-world selfie images using DensePose for segmenting body regions.Trained a 7-layer CNN model to predict weights based on segmented density maps, achieving strong prediction performance.	
Private Image Repository Flask, Google Cloud, SQL	Fall 2023
<ul style="list-style-type: none">Built a user-authenticated image repository using Flask and Google Cloud Run with CI/CD pipelines.Integrated SQL-based authentication, Google Secret Manager, and serverless deployment for scalability and security.Designed modular architecture enabling easy addition of new features and efficient handling of user requests, demonstrating strong software engineering practices.	

PUBLICATIONS

- Islam U.I.**, Cozzi D., Gagie T., Bonizzoni P., Prezza N., Rossi M., Scalable PBWT Queries with Minimum-Length SMEM Constraints, *Under review, RECOMB 2026*
- Islam U.I.**, Campelo dos Santos AL, Kanjilal R, Assis R., Learning genotype-phenotype associations from gaps in multi-species sequence alignments, *Briefings in Bioinformatics*, 2025 [IF: 9.5]
- Islam U.I.**, Sarker I.H., Haque E., Hoque M.M., Machine Learning Model for Predicting Individual Substance Abuse, *Annals of Data Science*, 2022

INDUSTRY EXPERIENCE

Software QA Engineer Enosis Solutions	Aug 2021 – Jul 2022
<ul style="list-style-type: none">Automated end-to-end testing workflows using Selenium and Python, improving QA coverage to 63% and reducing regression bugs by 40%.Performed JMeter-based performance testing on production APIs; identified bottlenecks leading to 82% improvement in response times.Collaborated with development teams on continuous integration pipelines, ensuring code quality in agile environment.	

HONORS & CERTIFICATIONS

- FAU Presidential Fellowship** (2022–2024) | **FAU Academic Excellence Award** (2023, 2024)
- IBM Data Science Professional Certificate | Linux Foundation Certified